Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Jpn Acad Ser B Phys Biol Sci ; 95(6): 261-277, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31189779

RESUMO

Vacuolar-type ATPase (V-ATPase), initially identified in yeast and plant vacuoles, pumps protons into the lumen of organelles coupled with ATP hydrolysis. The mammalian counterpart is found ubiquitously in endomembrane organelles and the plasma membrane of specialized cells such as osteoclasts. V-ATPase is also present in unique organelles such as insulin secretory granules, neural synaptic vesicles, and acrosomes of spermatozoa. Consistent with its diverse physiological roles and unique localization, the seven subunits of V-ATPase have 2-4 isoforms that are organelle- or cell-specific. Subunits of the enzyme function in trafficking organelles and vesicles by interacting with small molecule GTPases. During osteoclast differentiation, one of the four isoforms of subunit a, a3, is indispensable for secretory lysosome trafficking to the plasma membrane. Diseases such as osteopetrosis, renal acidosis, and hearing loss are related to V-ATPase isoforms. In addition to its role as an enzyme, V-ATPase has versatile physiological roles in eukaryotic cells.


Assuntos
Lisossomos/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Osteoclastos/citologia
2.
Biochim Biophys Acta Bioenerg ; 1860(5): 361-368, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30876890

RESUMO

The γ subunit located at the center of ATP synthase (FOF1) plays critical roles in catalysis. Escherichia coli mutant with Pro substitution of the γ subunit residue γLeu218, which are located the rotor shaft near the c subunit ring, decreased NADH-driven ATP synthesis activity and ATP hydrolysis-dependent H+ transport of membranes to ~60% and ~40% of the wild type, respectively, without affecting FOF1 assembly. Consistently, the mutant was defective in growth by oxidative phosphorylation, indicating that energy coupling is impaired by the mutation. The ε subunit conformations in the γLeu218Pro mutant enzyme were investigated by cross-linking between cysteine residues introduced into both the ε subunit (εCys118 and εCys134, in the second helix and the hook segment, respectively) and the γ subunit (γCys99 and γCys260, located in the globular domain and the carboxyl-terminal helix, respectively). In the presence of ADP, the two γ260 and ε134 cysteine residues formed a disulfide bond in both the γLeu218Pro mutant and the wild type, indicating that the hook segment of ε subunit penetrates into the α3ß3-ring along with the γ subunits in both enzymes. However, γ260/ε134 cross-linking in the γLeu218Pro mutant decreased significantly in the presence of ATP, whereas this effect was small in the wild type. These results suggested that the γ subunit carboxyl-terminal helix containing γLeu218 is involved in the conformation of the ε subunit hook region during ATP hydrolysis and, therefore, is required for energy coupling in FOF1.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , ATPases Translocadoras de Prótons/química , Substituição de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação de Sentido Incorreto , Domínios Proteicos , Estrutura Secundária de Proteína , ATPases Translocadoras de Prótons/genética
3.
Sci Rep ; 8(1): 6701, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712939

RESUMO

Secretory lysosomes are required for the specialised functions of various types of differentiated cells. In osteoclasts, the lysosomal proton pump V-ATPase (vacuolar-type ATPase) is targeted to the plasma membrane via secretory lysosomes and subsequently acidifies the extracellular compartment, providing optimal conditions for bone resorption. However, little is known about the mechanism underlying this trafficking of secretory lysosomes. Here, we demonstrate that the lysosome-specific a3 isoform of the V-ATPase a subunit plays an indispensable role in secretory lysosome trafficking, together with Rab7, a small GTPase involved in organelle trafficking. In osteoclasts lacking a3, lysosomes were not transported to the cell periphery, and Rab7 was not localised to lysosomes but diffused throughout the cytoplasm. Expression of dominant-negative (GDP-bound form) Rab7 inhibited lysosome trafficking in wild-type cells. Furthermore, a3 directly interacted with the GDP-bound forms of Rab7 and Rab27A. These findings reveal a novel role for the proton pump V-ATPase in secretory lysosome trafficking and an unexpected mechanistic link with Rab GTPases.


Assuntos
Lisossomos/genética , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP/genética , Animais , Citoplasma/genética , Regulação Enzimológica da Expressão Gênica , Guanosina Difosfato/genética , Humanos , Lisossomos/enzimologia , Camundongos , Camundongos Knockout , Organelas/genética , Isoformas de Proteínas/genética , Transporte Proteico/genética , proteínas de unión al GTP Rab7
4.
Biochem Biophys Res Commun ; 498(4): 837-841, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29530525

RESUMO

Porphyromonas gingivalis is a well-known Gram-negative bacterium that causes periodontal disease. The bacterium metabolizes amino acids and peptides to obtain energy. An ion gradient across its plasma membrane is thought to be essential for nutrient import. However, it is unclear whether an ion-pumping ATPase responsible for the gradient is required for bacterial growth. Here, we report the inhibitory effect of protonophores and inhibitors of a proton-pumping ATPase on the growth of P. gingivalis. Among the compounds examined, curcumin and citreoviridin appreciably reduced the bacterial growth. Furthermore, these compounds inhibited the ATPase activity in the bacterial membrane, where the A-type proton-pumping ATPase (A-ATPase) is located. This study suggests that curcumin and citreoviridin inhibit the bacterial growth by inhibiting the A-ATPase in the P. gingivalis membrane.


Assuntos
Porphyromonas gingivalis/efeitos dos fármacos , ATPases Translocadoras de Prótons/antagonistas & inibidores , Aurovertinas/farmacologia , Proteínas de Bactérias , Membrana Celular/enzimologia , Curcumina/farmacologia , Doenças Periodontais/prevenção & controle , Porphyromonas gingivalis/enzimologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Inibidores da Bomba de Prótons/farmacologia , Bombas de Próton/química
5.
Int J Biol Macromol ; 99: 615-621, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28246051

RESUMO

The F1 sector of ATP synthase (FOF1) synthesizes or hydrolyses ATP via a rotational catalysis mechanism that couples chemical reaction with subunit rotation. Phytopolyphenols such as curcumin can inhibit bulk phase F1 ATPase activity by extending the catalytic dwell time during subunit rotation (Sekiya, M., Hisasaka, R., Iwamoto-Kihara, A., Futai, M., Nakanishi-Matsui, M., Biochem. Biophys. Res. Commun. 452 (2014) 940-944). Citreoviridin, a polyene α-pyrone mycotoxin isolated from Penicillium sp, also inhibits ATPase activity. Molecular docking and mutational analysis indicated that these compounds interact with a region near the ß-subunit Arg398 residue that lies at the interface with the α-subunit. Binding of these inhibitors lowered the rotation rate and increased the duration of the catalytic dwell synergistically with substitution of ß-subunit Ser174 to Phe (ßS174F), which rendered the enzyme defective for conformational transmission between ß-subunits of different catalytic stages. Furthermore, substitution of α-subunit Glu402 to Ala (αE402A) in the α/ß-interface also decreased the rotation rate by increasing the duration of the catalytic dwell. Interestingly, this mutation restored the catalytic dwell of the ßS174F variant to that of the wild-type enzyme. These results suggest that the α/ß-interface is involved in conformational changes of the ß-subunit during rotational catalysis.


Assuntos
Biocatálise , Inibidores Enzimáticos/farmacologia , Mutação , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Animais , Aurovertinas/metabolismo , Aurovertinas/farmacologia , Sítios de Ligação , Bovinos , Curcumina/metabolismo , Curcumina/farmacologia , Sinergismo Farmacológico , Inibidores Enzimáticos/metabolismo , Escherichia coli/enzimologia , Hidrólise , Simulação de Acoplamento Molecular , Mutação/efeitos dos fármacos , Conformação Proteica , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/genética , Rotação
6.
Biochim Biophys Acta ; 1857(2): 129-140, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26589785

RESUMO

ATP synthases (FoF1) are found ubiquitously in energy-transducing membranes of bacteria, mitochondria, and chloroplasts. These enzymes couple proton transport and ATP synthesis or hydrolysis through subunit rotation, which has been studied mainly by observing single molecules. In this review, we discuss the mechanism of rotational catalysis of ATP synthases, mainly that from Escherichia coli, emphasizing the high-speed and stochastic rotation including variable rates and an inhibited state. Single molecule studies combined with structural information of the bovine mitochondrial enzyme and mutational analysis have been informative as to an understanding of the catalytic site and the interaction between rotor and stator subunits. We discuss the similarity and difference in structure and inhibitory regulation of F1 from bovine and E. coli. Unlike the crystal structure of bovine F1 (α3ß3γ), that of E. coli contains a ε subunit, which is a known inhibitor of bacterial and chloroplast F1 ATPases. The carboxyl terminal domain of E. coli ε (εCTD) interacts with the catalytic and rotor subunits (ß and γ, respectively), and then inhibits rotation. The effects of phytopolyphenols on F1-ATPase are also discussed: one of them, piceatannol, lowered the rotational speed by affecting rotor/stator interactions.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Polifenóis/química , Subunidades Proteicas/química , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/química , Animais , Biocatálise , Domínio Catalítico , Bovinos , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Hidrólise , Modelos Moleculares , Polifenóis/farmacologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Subunidades Proteicas/farmacologia , ATPases Translocadoras de Prótons/metabolismo , Rotação , Especificidade da Espécie , Termodinâmica
7.
J Biol Chem ; 289(44): 30822-30831, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25228697

RESUMO

Escherichia coli ATP synthase (F0F1) couples catalysis and proton transport through subunit rotation. The ϵ subunit, an endogenous inhibitor, lowers F1-ATPase activity by decreasing the rotation speed and extending the duration of the inhibited state (Sekiya, M., Hosokawa, H., Nakanishi-Matsui, M., Al-Shawi, M. K., Nakamoto, R. K., and Futai, M. (2010) Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. J. Biol. Chem. 285, 42058-42067). In this study, we constructed a series of ϵ subunits truncated successively from the carboxyl-terminal domain (helix 1/loop 2/helix 2) and examined their effects on rotational catalysis (ATPase activity, average rotation rate, and duration of inhibited state). As expected, the ϵ subunit lacking helix 2 caused about ½-fold reduced inhibition, and that without loop 2/helix 2 or helix 1/loop 2/helix 2 showed a further reduced effect. Substitution of ϵSer(108) in loop 2 and ϵTyr(114) in helix 2, which possibly interact with the ß and γ subunits, respectively, decreased the inhibitory effect. These results suggest that the carboxyl-terminal domain of the ϵ subunit plays a pivotal role in the inhibition of F1 rotation through interaction with other subunits.


Assuntos
Proteínas de Escherichia coli/química , ATPases Translocadoras de Prótons/química , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Biocatálise , Proteínas de Escherichia coli/genética , Cinética , Modelos Moleculares , Estrutura Quaternária de Proteína , Subunidades Proteicas , ATPases Translocadoras de Prótons/genética , Deleção de Sequência
8.
Biochem Biophys Res Commun ; 452(4): 940-4, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25230139

RESUMO

ATP synthase (F-ATPase) function depends upon catalytic and rotation cycles of the F1 sector. Previously, we found that F1 ATPase activity is inhibited by the dietary polyphenols, curcumin, quercetin, and piceatannol, but that the inhibitory kinetics of curcumin differs from that of the other two polyphenols (Sekiya et al., 2012, 2014). In the present study, we analyzed Escherichia coli F1 ATPase rotational catalysis to identify differences in the inhibitory mechanism of curcumin versus quercetin and piceatannol. These compounds did not affect the 120° rotation step for ATP binding and ADP release, though they significantly increased the catalytic dwell duration for ATP hydrolysis. Analysis of wild-type F1 and a mutant lacking part of the piceatannol binding site (γΔ277-286) indicates that curcumin binds to F1 differently from piceatannol and quercetin. The unique inhibitory mechanism of curcumin is also suggested from its effect on F1 mutants with defective ß-γ subunit interactions (γMet23 to Lys) or ß conformational changes (ßSer174 to Phe). These results confirm that smooth interaction between each ß subunit and entire γ subunit in F1 is pertinent for rotational catalysis.


Assuntos
Curcumina/química , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Ativação Enzimática , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
9.
Int J Biol Macromol ; 70: 241-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25010476

RESUMO

Curcumin, a dietary phytopolyphenol isolated from a perennial herb (Curcuma longa), is a well-known compound effective for bacterial infections and tumors, and also as an antioxidant. In this study, we report the inhibitory effects of curcumin and its analogs on the Escherichia coli ATP synthase F1 sector. A structure-activity relationship study indicated the importance of 4'-hydroxy groups and a ß-diketone moiety for the inhibition. The 3'-demethoxy analog (DMC) inhibited F1 more strongly than curcumin did. Furthermore, these compounds inhibited E. coli growth through oxidative phosphorylation, consistent with their effects on ATPase activity. These results suggest that the two compounds affected bacterial growth through inhibition of ATP synthase. Derivatives including bis(arylmethylidene)acetones (C5 curcuminoids) exhibited only weak activity toward ATPase and bacterial growth.


Assuntos
ATPases Bacterianas Próton-Translocadoras/antagonistas & inibidores , Curcumina/análogos & derivados , Curcumina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/metabolismo , Curcumina/química , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Fosforilação Oxidativa/efeitos dos fármacos , Relação Estrutura-Atividade
10.
Biochem Biophys Res Commun ; 446(4): 889-93, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24631905

RESUMO

Intra-molecular rotation of FOF1 ATP synthase enables cooperative synthesis and hydrolysis of ATP. In this study, using a small gold bead probe, we observed fast rotation close to the real rate that would be exhibited without probes. Using this experimental system, we tested the rotation of FOF1 with the ε subunit connected to a globular protein [cytochrome b562 (ε-Cyt) or flavodoxin reductase (ε-FlavR)], which is apparently larger than the space between the central and the peripheral stalks. The enzymes containing ε-Cyt and ε-FlavR showed continual rotations with average rates of 185 and 148 rps, respectively, similar to the wild type (172 rps). However, the enzymes with ε-Cyt or ε-FlavR showed a reduced proton transport. These results indicate that the intra-molecular rotation is elastic but proton transport requires more strict subunit/subunit interaction.


Assuntos
Grupo dos Citocromos b/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fusão Gênica , NADH NADPH Oxirredutases/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Fusão Gênica Artificial , Grupo dos Citocromos b/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , NADH NADPH Oxirredutases/genética , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética
11.
Biochim Biophys Acta ; 1837(6): 744-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24561225

RESUMO

Osteoclasts acidify bone resorption lacunae through proton translocation by plasma membrane V-ATPase (vacuolar-type ATPase) which has an a3 isoform, one of the four isoforms of the trans-membrane a subunit (Toyomura et al., J. Biol. Chem., 278, 22023-22030, 2003). d2, a kidney- and epididymis-specific isoform of the d subunit, was also induced in osteoclast-like cells derived from the RAW264.7 line, and formed V-ATPase with a3. The amount of d2 in osteoclasts was 4-fold higher than that of d1, a ubiquitous isoform. These results indicate that V-ATPase with d2/a3 is a major osteoclast proton pump. Essentially the same results were obtained with osteoclasts derived from mouse spleen macrophages. Macrophages from a3-knock-out mice could differentiate into multi-nuclear cells with osteoclast-specific enzymes. In these cells, the d2 isoform was also induced and assembled in V-ATPase with the a1 or a2 isoform. However, they did not absorb calcium phosphate, indicating that V-ATPase with d2/a1 or d2/a2 could not perform the function of that with d2/a3.


Assuntos
Isoenzimas/metabolismo , Osteoclastos/metabolismo , Bombas de Próton/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Isoenzimas/genética , Macrófagos/enzimologia , Camundongos , Camundongos Knockout , Osteoclastos/enzimologia , Reação em Cadeia da Polimerase , Baço/citologia , Baço/enzimologia , ATPases Vacuolares Próton-Translocadoras/genética
12.
J Biol Chem ; 288(51): 36236-43, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24196958

RESUMO

The proton (H(+)) pumping vacuolar-type ATPase (V-ATPase) is a rotary enzyme that plays a pivotal role in forming intracellular acidic compartments in eukaryotic cells. In Saccharomyces cerevisiae, the membrane extrinsic catalytic V1 and the transmembrane proton-pumping Vo complexes have been shown to reversibly dissociate upon removal of glucose from the medium. However, the basis of this disassembly is largely unknown. In the earlier study, we have found that the amino-terminal α-helical domain between Lys-33 and Lys-83 of yeast E subunit (Vma4p) in the peripheral stalk of the V1 complex has a role in glucose-dependent VoV1 assembly. Results of alanine-scanning mutagenesis within the domain revealed that the Vma4p Glu-44 is a key residue in VoV1 disassembly. Biochemical analysis on Vma4p Glu-44 to Ala, Asn, Asp, and Gln substitutions indicated that Glu-44 has a role in V-ATPase catalysis. These results suggest that Glu-44 is one of the key functional residues for subunit interaction in the V-ATPase stalk complex that allows both efficient rotation catalysis and assembly.


Assuntos
Ácido Glutâmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Glucose/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Multimerização Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética
13.
Biochem Biophys Res Commun ; 440(4): 611-6, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24113383

RESUMO

A murine macrophage-derived line, RAW264.7, becomes multinuclear on stimulation with lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria. These multinuclear cells internalized more polystyrene beads than mononuclear cells or osteoclasts (Nakanishi-Matsui, M., Yano, S., Matsumoto, N., and Futai, M., 2012). In this study, we analyzed the time courses of cell fusion in the presence of large beads. They were internalized into cells actively fusing to become multinuclear. However, the multinuclear cells once formed showed only low phagocytosis activity. These results suggest that formation of the multinuclear cells and bead internalization took place simultaneously. The formation of multinuclear cells was blocked by inhibitors for phosphoinositide 3-kinase, phospholipase C, calcineurin, and c-Jun N-terminal kinase. In addition, interleukin 6 and 10 also exhibited inhibitory effects. These signaling molecules and cytokines may play a crucial role in the LPS-induced multinuclear cell formation.


Assuntos
Fusão Celular , Núcleo Celular/ultraestrutura , Lipopolissacarídeos/imunologia , Poliestirenos/metabolismo , Animais , Inibidores de Calcineurina , Linhagem Celular , Interleucina-10/farmacologia , Interleucina-6/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/administração & dosagem , Camundongos , Microesferas , Fagocitose , Fosfatidilinositol 3-Quinases/administração & dosagem , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores
14.
IUBMB Life ; 65(3): 247-54, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23441040

RESUMO

In this article, we discuss single molecule observation of rotational catalysis by E. coli ATP synthase (F-ATPase) using small gold beads. Studies involving a low viscous drag probe showed the stochastic properties of the enzyme in alternating catalytically active and inhibited states. The importance of subunit interaction between the rotor and the stator, and thermodynamics of the catalysis are also discussed. "Single Molecule Enzymology" is a new trend for understanding enzyme mechanisms in biochemistry and physiology.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas Motores Moleculares/química , Subunidades Proteicas/química , ATPases Translocadoras de Prótons/química , Prótons , Trifosfato de Adenosina/química , Biocatálise , Domínio Catalítico , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ouro/química , Hidrólise , Simulação de Dinâmica Molecular , Proteínas Motores Moleculares/metabolismo , Conformação Proteica , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Rotação , Termodinâmica
15.
Philos Trans R Soc Lond B Biol Sci ; 368(1611): 20120023, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23267177

RESUMO

The rotary motor F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) is one of the best-studied of all molecular machines. F(1)-ATPase is the part of the enzyme F(1)F(O)-ATP synthase that is responsible for generating most of the ATP in living cells. Single-molecule experiments have provided a detailed understanding of how ATP hydrolysis and synthesis are coupled to internal rotation within the motor. In this work, we present evidence that mesophilic F(1)-ATPase from Escherichia coli (EF(1)) is governed by the same mechanism as TF(1) under laboratory conditions. Using optical microscopy to measure rotation of a variety of marker particles attached to the γ-subunit of single surface-bound EF(1) molecules, we characterized the ATP-binding, catalytic and inhibited states of EF(1). We also show that the ATP-binding and catalytic states are separated by 35±3°. At room temperature, chemical processes occur faster in EF(1) than in TF(1), and we present a methodology to compensate for artefacts that occur when the enzymatic rates are comparable to the experimental temporal resolution. Furthermore, we show that the molecule-to-molecule variation observed at high ATP concentration in our single-molecule assays can be accounted for by variation in the orientation of the rotating markers.


Assuntos
ATPases Bacterianas Próton-Translocadoras/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Citoesqueleto de Actina/química , Difosfato de Adenosina/química , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/química , Sítios de Ligação , Ativação Enzimática , Ensaios Enzimáticos , Hidrodinâmica , Hidrólise , Magnésio/química , Imagem Óptica/métodos , Ligação Proteica , Conformação Proteica , Temperatura , Fatores de Tempo
16.
Biochem Biophys Res Commun ; 425(2): 144-9, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22820190

RESUMO

Lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, induces strong proinflammatory responses, including the release of cytokines and nitric oxide from macrophage. In this study, we found that a murine macrophage-derived line, RAW264.7, became multinuclear through cell-cell fusion after incubation with highly purified LPS or synthetic lipid A in the presence of Ca(2+). The same cell line is known to differentiate into multinuclear osteoclast, which expresses a specific proton pumping ATPase together with osteoclast markers on stimulation by the extracellular domain of receptor activator of nuclear factor κB ligand (Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G.-H., Wada, Y. and Futai, M., 2003). The LPS-induced multinuclear cells did not express osteoclast-specific enzymes including tartrate-resistant acid phosphatase and cathepsin K. During multinuclear cell formation, the cells internalized more and larger polystyrene beads (diameter 6-15 µm) than mononuclear cells and osteoclasts. The internalized beads were located in lysosome-marker positive organelles, which were probably phagolysosomes. The LPS-induced multinuclear cell could be a good model system to study phagocytosis of large foreign bodies.


Assuntos
Núcleo Celular/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fagossomos/imunologia , Animais , Cálcio/farmacologia , Fusão Celular , Linhagem Celular , Escherichia coli/imunologia , Lipídeo A/imunologia , Lipídeo A/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Microesferas , Fagocitose/imunologia , Poliestirenos/imunologia , Salmonella/imunologia
17.
J Biol Chem ; 287(27): 22771-80, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22582396

RESUMO

In observations of single molecule behavior under V(max) conditions with minimal load, the F(1) sector of the ATP synthase (F-ATPase) rotates through continuous cycles of catalytic dwells (∼0.2 ms) and 120° rotation steps (∼0.6 ms). We previously established that the rate-limiting transition step occurs during the catalytic dwell at the initiation of the 120° rotation. Here, we use the phytopolyphenol, piceatannol, which binds to a pocket formed by contributions from α and ß stator subunits and the carboxyl-terminal region of the rotor γ subunit. Piceatannol did not interfere with the movement through the 120° rotation step, but caused increased duration of the catalytic dwell. The duration time of the intrinsic inhibited state of F(1) also became significantly longer with piceatannol. All of the beads rotated at a lower rate in the presence of saturating piceatannol, indicating that the inhibitor stays bound throughout the rotational catalytic cycle. The Arrhenius plot of the temperature dependence of the reciprocal of the duration of the catalytic dwell (catalytic rate) indicated significantly increased activation energy of the rate-limiting step to trigger the 120° rotation. The activation energy was further increased by combination of piceatannol and substitution of γ subunit Met(23) with Lys, indicating that the inhibitor and the ß/γ interface mutation affect the same transition step, even though they perturb physically separated rotor-stator interactions.


Assuntos
Escherichia coli/enzimologia , Polifenóis/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Estilbenos/metabolismo , Sequência de Aminoácidos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Catálise , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Mutagênese/fisiologia , Polifenóis/química , Polifenóis/farmacologia , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Quercetina/metabolismo , Quercetina/farmacologia , Estilbenos/farmacologia , Temperatura , Termodinâmica
18.
Biochim Biophys Acta ; 1817(10): 1711-21, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22459334

RESUMO

We focus on the rotational catalysis of Escherichia coli F-ATPase (ATP synthase, F(O)F(1)). Using a probe with low viscous drag, we found stochastic fluctuation of the rotation rates, a flat energy pathway, and contribution of an inhibited state to the overall behavior of the enzyme. Mutational analyses revealed the importance of the interactions among ß and γ subunits and the ß subunit catalytic domain. We also discuss the V-ATPase, which has different physiological roles from the F-ATPase, but is structurally and mechanistically similar. We review the rotation, diversity of subunits, and the regulatory mechanism of reversible subunit dissociation/assembly of Saccharomyces cerevisiae and mammalian complexes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , ATPases Translocadoras de Prótons/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Domínio Catalítico , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Estrutura Terciária de Proteína , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética
19.
J Biol Chem ; 285(53): 42058-67, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20974856

RESUMO

ATP hydrolysis-dependent rotation of the F(1) sector of the ATP synthase is a successive cycle of catalytic dwells (∼0.2 ms at 24 °C) and 120° rotation steps (∼0.6 ms) when observed under V(max) conditions using a low viscous drag 60-nm bead attached to the γ subunit (Sekiya, M., Nakamoto, R. K., Al-Shawi, M. K., Nakanishi-Matsui, M., and Futai, M. (2009) J. Biol. Chem. 284, 22401-22410). During the normal course of observation, the γ subunit pauses in a stochastic manner to a catalytically inhibited state that averages ∼1 s in duration. The rotation behavior with adenosine 5'-O-(3-thiotriphosphate) as the substrate or at a low ATP concentration (4 µM) indicates that the rotation is inhibited at the catalytic dwell when the bound ATP undergoes reversible hydrolysis/synthesis. The temperature dependence of rotation shows that F(1) requires ∼2-fold higher activation energy for the transition from the active to the inhibited state compared with that for normal steady-state rotation during the active state. Addition of superstoichiometric ε subunit, the inhibitor of F(1)-ATPase, decreases the rotation rate and at the same time increases the duration time of the inhibited state. Arrhenius analysis shows that the ε subunit has little effect on the transition between active and inhibited states. Rather, the ε subunit confers lower activation energy of steady-state rotation. These results suggest that the ε subunit plays a role in guiding the enzyme through the proper and efficient catalytic and transport rotational pathway but does not influence the transition to the inhibited state.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Translocadoras de Prótons/química , Trifosfato de Adenosina/química , Bioquímica/métodos , Biofísica/métodos , Catálise , Hidrólise , Cinética , Magnésio/química , Temperatura , Viscosidade
20.
Biochem Biophys Res Commun ; 395(2): 173-7, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20331967

RESUMO

The ATP synthase beta subunit hinge domain (betaPhe148 approximately betaGly186, P-loop/alpha-helixB/loop/beta-sheet4, Escherichia coli residue numbering) dramatically changes in conformation upon nucleotide binding. We previously reported that F(1) with the betaSer174 to Phe mutation in the domain lowered the gamma subunit rotation speed, and thus decreased the ATPase activity [M. Nakanishi-Matsui, S. Kashiwagi, T. Ubukata, A. Iwamoto-Kihara, Y. Wada, M. Futai, Rotational catalysis of Escherichia coli ATP synthase F(1) sector. Stochastic fluctuation and a key domain of the beta subunit, J. Biol. Chem. 282 (2007) 20698-20704.]. Homology modeling indicates that the amino acid replacement induces a hydrophobic network, in which the betaMet159, betaIle163, and betaAla167 residues of the beta subunit are involved together with the mutant betaPhe174. The network is expected to stabilize the conformation of beta(DP) (nucleotide-bound form of the beta subunit), resulting in increased activation energy for transition to beta(E) (empty beta subunit). The modeling further predicts that replacement of betaMet159 with Ala or Ile weakens the hydrophobic network. As expected, these two mutations experimentally suppressed the ATPase activities as well as subunit rotation of betaS174F. Furthermore, the rotation rate decreased with the increase of the strength in the hydrophobic network. These results indicate that the smooth conformational change of the beta subunit hinge domain is pertinent for the rotational catalysis.


Assuntos
Complexos de ATP Sintetase/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana/metabolismo , Fenilalanina/metabolismo , Fatores de Transcrição/metabolismo , Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/genética , Substituição de Aminoácidos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Fenilalanina/química , Fenilalanina/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Rotação , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...